生成式人工智能的技术局限和伦理风险
自ChatGPT面世以来,生成式人工智能成为人工智能领域发展的热点。生成式人工智能技术的基本形态,是采用海量数据来训练人工智能大模型,使其学会人类的语言文本和图像视频的统计模式后,能够在用户给出提示指令后,自动地生成所需的数字内容。与传统人工智能局限于分类、识别等特定功能相比,生成式人工智能更关注创造性内容的生成,展现出前所未有的文字对话、文档撰稿、代码编写、图片创意、语音合成和视频生成等多样性的能力。
生成式人工智能技术综合了60多年来人工智能的研究成果,特别是最近10年来深度学习的技术突破。首先,能够从海量的语料数据中学习人类知识,熟记文本、语音、图像、视频等内在规律与统计模式,自动生成用户所需的新文本、图片、声音和视频。其次,实现了大模型的基于大量数据的训练学习通用特征与在特定任务上进行微调以优化性能的学习模式,并能够接受人类反馈进一步强化学习。不但可以记忆通用的人类知识,还可以持续学习专业的知识与技能,并在人类的奖励指导下,输出符合人类道德和法律约束的内容。最后,具备多模态数据的融合机制,动态融合文本、语音、图像、视频等数据,不仅能够生成更为丰富多样的数字内容,而且通过语音、手势、面部表情等的识别,支撑实现I像人一样与人类交流互动。总之,生成式人工智能已经展现出了多模态、通用化的认知和交互智能,表现出“由专到通”的强大能力,在自动化文档生成、自动化编程、智能客户服务、供应链管理、产品研发、智慧教育和智慧医疗等多个领域展现出极大优势,因而成为诸多领域的热门应用。
虽然这两三年来生成式人工智能展现出了前所未有的认知和多模态交互能力,但是其内在局限日益凸显,如何继续深入推进生成式人工智能技术发展,使之能够真正广泛落地应用,成为人们关注的焦点。
(阅读全部图文内容,您需要先登录!)